An Application of Rician Cramer-Rao Lower Bound for Optimizing Gradient Schemes in Diffusion Tensor Imaging

> Shantanu Majumdar¹, David C. Zhu^{3,4}, Satish S. Udpa¹, L. Guy Raguin^{2,3}

¹ Department of Electrical & Computer Engineering,
 ² Department of Mechanical Engineering,
 ³ Department of Radiology,
 ⁴ Department of Psychology
 Michigan State University, East Lansing

Outline

Introduction

- DTI, Rician noise, CRLB, optimization
- Motivation, scope for optimization
- Experiments
 - Design, DTI protocol
- Results
 - Demonstration of improvement in estimation
- Conclusion

Introduction

- Diffusion Tensor Imaging (DTI)¹ is an advanced MRI technique which can quantify diffusivity of water in tissues.
- MR signal is modeled as a function of diffusion and experimental parameters. Noise is modeled as Rician since MRI data are magnitude of complex data
- Uncertainty in estimation of diffusion parameters depends on the choice of experimental parameters that can be optimized

 A Rician CRLB-based gradient scheme optimization² has been proposed and experimentally validated

[1] P. J. Basser, J. Matiello, and D. Le Bihan, "MR Diffusion Tensor Spectroscopy and Imaging", *J. Biophys.*, 1994, vol. 66, p 259-267.

[2] S. Majumdar, D. C. Zhu, S. S. Udpa, L. G. Raguin, "An Optimized Diffusion Gradient Scheme for Axisymmetric Diffusion Tensor Imaging of Spinal Cord Tracts", submitted to *IEEE Transactions on Medical Imaging*, under review.

DTI Signal

DTI signal: $E = S / S_0 = \exp(-bg^T Dg)$,

- g : diffusion encoding gradient direction.
- D : Diffusion tensor matrix
- S: Diffusion-weighted MRI signal
- S₀: Normalizing signal (MRI signal with no diffusion-weighting)
- *b* : sensitivity factor ("b-factor")

$$D = R^{T} D_{0} R \quad R = R(\theta_{F}, \varphi_{F}),$$

$$\begin{bmatrix}
 D_{\perp} & 0 & 0 \\
 D_{0} & = \begin{bmatrix}
 0 & D_{\perp} & 0 \\
 0 & 0 & D
 \end{bmatrix}$$

Axisymmetric diffusion tensor

Estimation parameters:

 $\beta = \{D_{\parallel}, D_{\perp}, \theta_{\rm F}, \phi_{\rm F}\}$

Diffusion ellipsoid

Noise model

- S, S₀ are magnitudes of complex MRI data
- Complex MRI data assume Gaussian noise, Magnitude MRI have Rician noise
- S₀ assumed to have high SNR
- Noise in DTI signal (echo attenuation), E = S/S₀, is also Rician

$$p(\hat{E} \mid E, \sigma^2) = \frac{\hat{E}}{\sigma^2} I_0(\frac{E\hat{E}}{\sigma^2}) \exp(-\frac{\hat{E}^2 + E^2}{2\sigma^2})$$

 I_0 is the zero-order modified Bessel function of the first kind. \hat{E} is the observed echo attenuation signal. E is the model echo signal and σ^2 is the noise variance.

Motivation: Using A Priori Information

Reduced

Uncertainty

T1 image

For special structures such as spinal cord, most nerve fibers are oriented within $\sim 35^{\circ}$ of mean fiber orientation as obtained from preliminary studies.

A priori spread of fiber distribution $\sim 35^{\circ}$

Optimization of gradient directions

CRLB

• Cramer-Rao Bound on Variance: $\sum (\hat{\beta}) - I^{-1}(\beta) \ge \mathbf{0}$

I : Fisher Information matrix

Σ : Covariance matrix of estimates

 $\sum_{CR} (\beta) = \mathrm{I}^{-1}(\beta) \qquad [\mathrm{I}(\beta)]_{jk} = -\left\langle \frac{\partial^2 \ln \rho(\hat{E})}{\partial \beta_j \partial \beta_k} \right\rangle$

 $\langle \rangle$ represents the expectation operation w.r.t. $\rho(\hat{E})$

Any minimum variance unbiased and efficient estimator should attain the covariance bound on estimation

Rician CRLB

Fisher information matrix for Rician noise¹:

$$[\mathbf{I}(\beta)]_{jk} = \sum_{i=1}^{N} \frac{1}{\sigma^2} \frac{\partial E_i}{\partial \beta_j} \frac{\partial E_i}{\partial \beta_k} (E_i^2 - Z_i)$$
$$= \sum_{i=1}^{N} \frac{1}{\sigma^2} (E_i - W_i) \frac{\partial E_i}{\partial \beta_j} (E_i + W_i) \frac{\partial E_i}{\partial \beta_k}$$

where
$$W_{i}^{-} = Z_{i}$$
 and $Z_{i} = \int_{0}^{\infty} E_{i}^{-} I_{1}^{2} \left(\frac{T}{\sigma^{2}}\right) I_{0}^{-2} \left(\frac{T}{\sigma^{2}}\right) p(E) dE_{i}$

$$\sum_{CR} (\beta) = \mathrm{I}^{-1}(\beta) = \sigma^{4} \left(\mathbf{X}_{1}^{T} \mathbf{X}_{2}\right)^{-1} \qquad [\mathrm{X}_{1}]_{ij} = (E_{i} - W_{i}) \frac{\partial E_{i}}{\partial \beta_{j}}$$

$$[\mathrm{X}_{2}]_{ij} = (E_{i} + W_{i}) \frac{\partial E_{i}}{\partial \beta_{j}}$$

[1] D. C. Alexander. A General Framework for Experiment Design in Diffusion MRI and Its Application in Measuring Direct Tissue-Microstructure Features. Mag. Res. Med., 60:439-448, 2008.

Optimization

 For a nonlinear least-squares estimation, the Cramer-Rao bound¹ on estimator covariance:

$$\Sigma_{CR} = \sigma^4 (\mathbf{X}_1^{\mathsf{T}} \mathbf{X}_2)^{-1}$$

Taking determinant, de

$$\operatorname{et} \Sigma_{CR} = \frac{\sigma^{4M}}{\operatorname{det}(\mathbf{X}_{1}^{\mathsf{T}} \mathbf{X}_{2})}$$

$$\det \Sigma_{CR} = \det(\mathbf{X}_1^{\mathsf{T}} \mathbf{X}_2)$$

<u>Optimization problem</u>: Solve for $\Omega_{robust} := \{\mathbf{g}_i, i \in [1, N]\}$, N= number of gradient directions

$$\Omega_{\textit{robust}} = \arg[\min_{g}(\max_{\{\theta_{F}, \phi_{F}\} \in \Lambda} f)], \quad f = 1/\det(\mathbf{X}_{1}^{\mathsf{T}}\mathbf{X}_{2})$$

• "Minimax" technique; robust w.r.t. fiber angle

• Use of a priori information in f and Λ and Rician formulation

[1] S. Majumdar, D. C. Zhu, S. S. Udpa, L. G. Raguin, "An Optimized Diffusion Gradient Scheme for Axisymmetric Diffusion Tensor Imaging of Spinal Cord Tracts", submitted to IEEE Transactions on Medical Imaging, under review.

Region of Interest

- Upper spinal cord tracts selected as imaging target
 - Simple structure, but difficult to image due to small cross-section
 - SNR issues at high resolutions due to small voxel size
 - Ideal target to apply optimized DTI procedure
 - Diffusion parameter estimates have lower overall variance
 - effective SNR improved by optimization
 - Similar high resolution imaging achieved as in standard DTI procedure

Region of Interest

Slice views of ROI

T1 image Axial view

Optimization procedure:

Preliminary scan to collect a priori information

Gradient scheme optimization

 Data collection and analysis with the optimized DTI protocol

Preliminary scan to collect a priori information:

- Obtain an approximate
 - mean of model parameters
 - range of fiber orientations
- Used to compute inputs for gradient optimization procedure
- Scan protocol: Short DTI (1 min 52 s), 15 diffusion directions, b = 1000 s⁻¹mm², MF15

 Post-processing: ROI extraction, computation of the mean of model parameters and fiber angular range

- Gradient scheme optimization
 - Solve for Ω_{robust}

 $\Omega_{robust} = \arg[\min_{g}(\max_{\{\theta_{F}, \phi_{F}\} \in \Lambda} f)], \quad f = 1/\det(\mathbf{X}_{1}^{\mathsf{T}}\mathbf{X}_{2})$

- X₁(β, Ω), X₂(β, Ω): functions of both model parameters (β) and gradient scheme (Ω)
- Mean of model parameters from preliminary scan used as β
- Λ : range of fiber angles also computed from preliminary scan

Gradient schemes (OPT30 and MF30):

Gradient directions (white circles) on 2D (opened hemisphere), underlaying echo signal for range of gradient directions ($g = \{\theta, \phi\}$). Black triangle represents the mean fiber orientation.

Optimized scheme performance prediction using CRLB

Small Λ = Specific performance w.r.t. fiber angle

Large Λ = Generic performance w.r.t. fiber angle

Variation of overall uncertainty for 30-direction optimal gradient schemes with changing cone angles ($\Lambda = [10^{\circ} - 90^{\circ}]$) and the MF30 scheme for the Rician noise case. Noise level, $\sigma = 0.1$.

Data collection and analysis with the optimized DTI protocol

- DTI scan protocol using optimized gradient scheme: full DTI (7 min 21 s), 30 diffusion directions, b = 1000 s⁻¹mm², OPT30 scheme (for test). MF30 (for comparison).
- Dataset: 6 DTI dataset for OPT30 and MF30 each; bootstrapped to 6000 datasets for variance computation. Maximum likelihood estimator used for estimation

Analysis

What to expect:

- Reduction in uncertainty in parameter estimation
- Rician CRLB-based predicted performance match estimation
- What is the effect on:
 - Bias
 - Overall SNR of the image dataset
- What are the sources of error?

Results

Reduction in estimation uncertainty:

 $D_{OPT30} / D_{MF30} < 1$

 $D = \begin{cases} \det \Sigma, \text{ for estimation} \\ \det \Sigma_{CRLB}, \text{ for prediction} \end{cases}$

 $D_{OPT30} = OPT30$ scheme $D_{MF30} = MF30$ scheme

Voxel distributions w.r.t. ratio of overall uncertainty (D_{OPT30}/D_{MF30}) for one subject. We find that the majority of voxels lie in the less than unity range and are predicted so based on CRLB values.

Results

Estimation results:

•	Total spinal cord tract voxels selected	=	46
•	Percentage success in voxels	=	76 %
•	Predicted percentage success	=	80 %
•	Mean D _{OPT30} /D _{MF30} in successful voxels	s =	0.346 (< 1)
•	Mean D _{OPT30} /D _{MF30} in successful voxels	s =	0.361 (< 1)
Ef	fect on bias and SNR:		
•	Mean angular deviation for OPT30	=	2.9° ± 1.8°
•	Mean angular deviation for MF30	=	3.0° ± 1.2°
•	Mean diffusivity D _{II} for OPT30	=	2.354×10⁻³ mm² s⁻¹
•	Mean diffusivity D _{ll} for MF30	=	2.334×10⁻³ mm² s⁻¹
•	Mean diffusivity $D_{\perp}^{"}$ for OPT30	=	0.259×10 ⁻³ mm ² s ⁻¹
	Mean diffusivity D_{\perp} for MF30	=	0.269×10 ⁻³ mm ² s ⁻¹
	Mean effective SNR for OPT <u>30</u>	=	5.514
	Mean effective SNR for MF30	=	5.079

Discussion

Sources of error:

- Crossing fiber effects
 - DTI signal formulation models single fiber
 - Crossing fibers at neuronal junctions in the spinal cord will introduce errors/uncertainty in estimation
 - Possible solution: Use model-based crossing fiber signal formulation (BEDPOST) or model-free formulation (Q-ball imaging)

Partial volume effects

- Heterogeneity within voxel: Voxel partially on the tract tissue (white matter), the grey matter (neuron cell bodies) or CSF
- DTI signal gets averaged within voxel over the various tissue types
- Possible solution: Incorporate volume fraction in the voxel for white and grey matter and model expected signal from each separately

Conclusion

- Majority of the voxels selected in the upper spinal cord tracts show reduction in uncertainty using OPT30 as compared to MF30(standard) using the Rician CRLB-based optimization
- Performance of the optimized gradient scheme can be predicted before conducting the experiment using the Rician CRLB formulation
- Optimized gradient scheme can be designed to perform for a range of fiber orientations which is obtained from prior information
- Optimized scheme does not affect the bias differently from the standard MF30 scheme and provides better effective SNR
- Reduced estimation uncertainty can imply applications in spinal cord MRI studies for detection of diseases, such as multiple sclerosis and myelopathy

Thank you!