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Introduction

 Diffusion Tensor Imaging (DTI)1 is an advanced MRI 
technique which can quantify diffusivity of water in tissues.

 MR signal is modeled as a function of diffusion and 
experimental parameters. Noise is modeled as Rician since 
MRI data are magnitude of complex data

 Uncertainty in estimation of diffusion parameters depends 
on the choice of experimental parameters that can be 
optimized

 A Rician CRLB-based gradient scheme optimization2 has 
been proposed and experimentally validated

[1] P. J. Basser, J. Matiello, and D. Le Bihan, “MR Diffusion Tensor Spectroscopy and Imaging”, J. Biophys., 1994, vol. 66, 

p 259-267.

[2] S. Majumdar, D. C. Zhu, S. S. Udpa, L. G. Raguin, “An Optimized Diffusion Gradient Scheme for Axisymmetric Diffusion 

Tensor Imaging of Spinal Cord Tracts”, submitted to IEEE Transactions on Medical Imaging, under review.
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DTI Signal
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g : diffusion encoding gradient direction.

D : Diffusion tensor matrix

S : Diffusion-weighted MRI signal

S0 : Normalizing signal (MRI signal with no   

diffusion-weighting)

b : sensitivity factor (“b-factor”)

Estimation parameters:
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Noise model

 S, S0 are magnitudes of complex MRI data

 Complex MRI data assume Gaussian noise, Magnitude 

MRI have Rician noise

 S0 assumed to have high SNR

 Noise in DTI signal (echo attenuation), E = S/S0, is also 

Rician
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I0 is the zero-order modified Bessel function of the first kind.    

is the observed echo attenuation signal.

E is the model echo signal and 2 is the noise variance.
Ê
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T1 image

Motivation: Using A Priori Information

For special structures such as spinal cord, 

most nerve fibers are oriented within ~ 350 of 

mean fiber orientation as obtained from 

preliminary studies.

S0 image

A priori spread of fiber distribution 

~ 35o

Optimization of 

gradient directions

Reduced 
Uncertainty

35o : at 80% cumulative distribution
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CRLB

 Cramer-Rao Bound on Variance:

0  )()ˆ( 1  I
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I : Fisher Information matrix

Σ : Covariance matrix of estimates
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represents the expectation operation w.r.t. 

Any minimum variance unbiased and efficient estimator should attain 

the covariance bound on estimation
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Rician CRLB

 Fisher information matrix for Rician noise1:
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[1] D. C. Alexander. A General Framework for Experiment Design in Diffusion MRI and Its Application in Measuring Direct Tissue-

Microstructure Features. Mag. Res. Med., 60:439–448, 2008.
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Optimization

• For a nonlinear least-squares estimation, the Cramer-Rao bound1 on 

estimator covariance:

1

21

4 )(  XX
T

CR

)det(
det

21

4

XX
T

M

CR




Taking 

determinant, 

)det(/1    )],(maxarg[min 21}{ ,
XX

T

g   ff
FFrobust 

Optimization problem: Solve for robust := {gi , i  [1, N]}, N= number of 

gradient directions

• “Minimax” technique; robust w.r.t. fiber angle 

• Use of a priori information in f and Λ and Rician formulation

CRdet )det( 21 XX
T

[1] S. Majumdar, D. C. Zhu, S. S. Udpa, L. G. Raguin, “An Optimized Diffusion Gradient Scheme for 

Axisymmetric Diffusion Tensor Imaging of Spinal Cord Tracts”, submitted to IEEE Transactions on Medical 

Imaging, under review.
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Region of Interest

 Upper spinal cord tracts selected as imaging 

target 

• Simple structure, but difficult to image due to small 

cross-section

• SNR issues at high resolutions due to small voxel 

size

• Ideal target to apply optimized DTI procedure

 Diffusion parameter estimates have lower overall variance

 effective SNR improved by optimization

 Similar high resolution imaging achieved as in standard DTI 

procedure 
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Region of Interest

 Slice views of ROI

T2 image 

Axial view

Tracts

CSF

Upper Spinal 

Cord

T1 image 

Coronal 

view

T1 image 

Axial view

T2 image 

Coronal 

view

T1 image 

Coronal 

view
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Experiment Design

Optimization procedure:

 Preliminary scan to collect a priori information

 Gradient scheme optimization

 Data collection and analysis with the optimized 

DTI protocol
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Experiment Design

 Preliminary scan to collect a priori information:
• Obtain an approximate 

 mean of model parameters

 range of fiber orientations

• Used to compute inputs for gradient optimization procedure

 Scan protocol: Short DTI (1 min 52 s), 15 diffusion 
directions, b = 1000 s-1mm2, MF15

 Post-processing: ROI extraction, computation of the 
mean of model parameters and fiber angular range
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Experiment Design

 Gradient scheme optimization

• Solve for robust

 X1(β, ), X2(β, ): functions of both model parameters (β) 

and gradient scheme ()

 Mean of model parameters from preliminary scan used as β

  : range of fiber angles also computed from preliminary 

scan

)det(/1   )],(maxarg[min 21}{ ,
XX

T

g   ff
FFrobust 
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Experiment Design

 Gradient schemes (OPT30 and MF30):

Gradient directions (white circles) on 2D (opened hemisphere), underlaying 

echo signal for range of gradient directions (g = {θ,}). Black triangle 

represents the mean fiber orientation.

MF30 scheme

OPT30 scheme ( = 35o)
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Experiment Design

 Optimized scheme performance prediction using CRLB

Variation of overall uncertainty for 

30-direction optimal gradient 

schemes with changing cone 

angles ( = [10o − 90o]) and the 

MF30 scheme for the Rician noise 

case. Noise level,  = 0.1.

Small  = Specific 

performance w.r.t. fiber 

angle

Large  = Generic 

performance w.r.t. fiber 

angle
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Experiment Design

 Data collection and analysis with the 

optimized DTI protocol
• DTI scan protocol using optimized gradient scheme: 

full DTI (7 min 21 s), 30 diffusion directions, b = 1000 

s-1mm2, OPT30 scheme (for test). MF30 (for 

comparison).

• Dataset: 6 DTI dataset for OPT30 and MF30 each; 

bootstrapped to 6000 datasets for variance 

computation. Maximum likelihood estimator used for 

estimation
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Analysis

 What to expect:
• Reduction in uncertainty in parameter estimation

• Rician CRLB-based predicted performance match 

estimation

 What is the effect on:
• Bias

• Overall SNR of the image dataset

 What are the sources of error?
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Results

 Reduction in estimation uncertainty:

Voxel distributions w.r.t. ratio of overall 

uncertainty (DOPT30 /DMF30 ) for one subject. We 

find that the majority of voxels lie in the less than 

unity range and are predicted so based on CRLB 

values.










prediction for ,det

estimation for , det

CRLB

D

Majority 

voxelsDOPT30 = OPT30 scheme

DMF30 = MF30 scheme

1/ 3030 MFOPT DD
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Results

 Estimation results:

• Total spinal cord tract voxels selected       =    46

• Percentage success in voxels                    =    76 % 

• Predicted percentage success                   =    80 %

• Mean DOPT30/DMF30 in successful voxels     =    0.346 (< 1)

• Mean DOPT30/DMF30 in successful voxels     =    0.361 (< 1)

 Effect on bias and SNR:

• Mean angular deviation for OPT30            =     2.9o ± 1.8o

• Mean angular deviation for MF30              =     3.0o ± 1.2o

• Mean diffusivity D|| for OPT30                    =     2.354×10−3 mm2 s−1

• Mean diffusivity D|| for MF30                      =     2.334×10−3 mm2 s−1

• Mean diffusivity D┴ for OPT30                   =      0.259×10−3 mm2 s−1

• Mean diffusivity D┴ for MF30                     =      0.269×10−3 mm2 s−1

• Mean effective SNR for OPT30                 =      5.514

• Mean effective SNR for MF30                   =      5.079
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Discussion

 Sources of error:
• Crossing fiber effects 

 DTI signal formulation models single fiber 

 Crossing fibers at neuronal junctions in the spinal cord will 
introduce errors/uncertainty in estimation

 Possible solution: Use model-based crossing fiber signal 
formulation (BEDPOST) or model-free formulation (Q-ball 
imaging)

• Partial volume effects
 Heterogeneity within voxel: Voxel partially on the tract tissue 

(white matter), the grey matter (neuron cell bodies) or CSF

 DTI signal gets averaged within voxel over the various tissue 
types 

 Possible solution: Incorporate volume fraction in the voxel for 
white and grey matter and model expected signal from each 
separately
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Conclusion
 Majority of the voxels selected in the upper spinal cord tracts show 

reduction in uncertainty using OPT30 as compared to 
MF30(standard) using the Rician CRLB-based optimization

 Performance of the optimized gradient scheme can be predicted 
before conducting the experiment using the Rician CRLB formulation

 Optimized gradient scheme can be designed to perform for a range of 
fiber orientations which is obtained from prior information 

 Optimized scheme does not affect the bias differently from the 
standard MF30 scheme and provides better effective SNR

 Reduced estimation uncertainty can imply applications in spinal cord 
MRI studies for detection of diseases, such as multiple sclerosis and 
myelopathy



Thank you!


